Binghamton CS-220

University Spring 2016

Sharing Resources

Computer Systems Chapter 8.2, 8.4

Binghamton CS-220

University Spring 2016

Abstract View

When I run my program, it has access to the entire computer,
including the processor, memory, keyboard, display, disk drives,
network connections, etc. etc. etc.

CS-220
Spring 2016

Binghamton

University

Leaky Abstraction

* In fact, most hardware supports multiple concurrent users
* Each user is often running multiple programs concurrently

* System services (called “deamons”) are often running to provide
real-time capabilities

* Even running on a multi-core machine, the number of
concurrently running programs almost always exceeds the
number of processors.

Binghamton CS-220

University

Spring 2016

Resource Sharing Goals

* Ensure each client (e.g. running program) gets a fair share of
resources

* Ensure that no client is blocked from continuing
* Ensure that busy clients get priority over idle clients

Binghamton CS-220

University Spring 2016

Early Resource Sharing: Batch Jobs

* Prepare your punch card deck
* Put your deck in the card reader... on top of other students

* Card reader reads the next job

* Computer processes the next job (compile, execute, print results)
* Later, you get your printout from the printer

| ‘HI | T 'ﬂ s | Ty @ — ;; 4 ’I :

Binghamton CS-220

University Spring 2016

Batch Processing / Sharing Goals

* Ensure each client gets a fair share of resources

* Everybody gets a turn
 First come/ first served
* Big jobs get more resources than small jobs

* Ensure that no client is blocked from continuing
e Fails if the student in front of me has an endless loop

* Ensure that busy clients get priority over idle clients
* Fails when the student in front of me is waiting for 10

* No concurrency!

Binghamton CS-220

University Spring 2016

Naming Clients

* Need a name/handle for each running program
* Can't be program name, because I can run the same program concurrently
* Must be created when program starts
* Must be deleted when program ends

* process- An invocation of a program
* Process ID: a numeric identifier associated with a process (PID)

 C Standard library function calls can create new processes [more later]|
* Ended by “exit” library call (in stdlib.h)

Binghamton CS-220

University Spring 2016

Process Hierarchy

* Processes can create new Pprocesses

* The creator is called the parent processor “ppid”
* The spawned process is called a child process

* Parent processes are responsible for their children

* In UNIX, when you log on, the OS process creates a child process
and assigns that process to you

* This is the interactive shell or GUI running on your behalf

Binghamton CS-220

University Spring 2016

Listing Processes

* In UNIX, the “ps” command lists processes

* By default, “ps” lists your process and all of it’s children
* To list all processes owned by you, “ps —-u<userid>"

* To list all processes by all owners on this machine, “ps -e”

alpha:~/CS220> ps -utbartens
PID TTY TIME CMD
2836 7 00:00:00 sshd
2837 00:00:00 tcsh

alpha:~/CS220> ps
PID TTY TIME CMD

?
2839 7?7 00:00:00 sftp-server
2933 pts/3 00:00:00 tcsh 2913 ? 00:00:00 sshd
3057 pts/3 00:00:00 ps 2914 7 00:00:00 tcsh
2923 7 00:00:00 sftp-server

2932 7 00:00:00 sshd
2933 pts/3 00:00:00 tcsh
3058 pts/3 00:00:00 ps

Binghamton CS-220

University Spring 2016

Process Resources

* Each process THINKS it owns all machine resources

« “virtual” processor, virtual memory, virtual keyboard, virtual monitor,
virtual disks, virtual network, ...

 OS connects VIRTUAL resources to REAL resources

. . . '

Binghamton CS-220
University Spring 2016

Time Slicing

PID 5321

PID 4879

PID 4472

Swap Out

Binghamton CS-220

University Spring 2016

Time Slicing Concepts

* OS keeps a list of activeprocesses
* An active process is a process trying to execute

* OS gives each active process a slice of time to make progress

* When a process gets a slice of time, it is swapped in
 All other active processes are swapped out

* When a process is swapped in, it can use real resources
* [t can actually make progress in order to complete its job

* When a process is swapped out, it does not have access to
resources

* It remains idle until it gets a time slice

Binghamton CS-220

University Spring 2016

Process Context

* There is information/date associated with each process
* Register values
* Values in memory
* How much data has been read from a file
* etc.

* The sum of all state for the entire process is called the process
context

 When a process is active, it has access to its entire context

Binghamton CS-220

University Spring 2016

Time Slicing Issue — Context Swap

* When a process is swapped out, we must save it’s context
* When a process is swapped in, we must load it’s context

* The process of saving the outgoing context, and loading
the incoming context is called a “context swap”

 Context swapping is “overhead” - extra resource needed
that does not do the processes work
* No context swapping required for batch jobs

Binghamton CS-220

University Spring 2016

How Big should a Time Slice be?

Process 1 Process 2 Process 3

Little Time Slices Big Time Slices

SN —] |] |
BT BT

Binghamton

CS-220

University

How Big should a Time Slice be?

Little Time Slices

* Makes progress seem
continuous to the user

* Increases the number of
context switches required
(more overhead)

* Smaller delta to swap in/out
(faster,; less overhead)

Spring 2016

Big Time Slices

* Makes progress seem jerky to
the user

* Decreases the number of
context switches required (less
overhead)

 Larger delta to swap in/out
(slower, more overhead)

Binghamton CS-220

University Spring 2016

Process Queue

Process 1 Process 2 Process 3

* List of processes competing for resources
* New processes can be added to the queue

* When a program is done, it's process can be removed from
the queue

Binghamton CS-220

University Spring 2016

Process Swapping / Context Switch

* Wait for Instruction to End

* Save context of swap out process
* Registers (especially EIP) & flags
* Main Memory (stack and heap)
* [/0 status

* Restore swapped in context
* Registers and Memory and I/0 status

* Restart instruction processing cycle

Binghamton CS-220

University Spring 2016

Swapping Memory

Bad Idea:
Write Swap Out address space from memory to disk

Read Swap In address space from disk to memory

* A 32 bitaddress space is 4G

* Writing 4G to disk takes ~1G/sec or 4 seconds

* Times slices are MUCH smaller than 1 second

* You would spend 99.9999% of the time reading/writing memory!

Solution: Stay Tuned

Binghamton CS-220

University Spring 2016

Process Swapping and Interrupts

* Often a process must request a resource, and wait until that
resource is available

* E.g.request a disk read, and wait until that data is available
* Process cannot use the processor while it is waiting
* Identified as an “idle” process
* Idle processes swapped out, and kept off of the process queue

 When request is satisfied, an “interrupt” occurs to wake up that
process

* When a process wakes up, it goes back on the process queue

Binghamton CS-220

University

Multi-Core Time Slicing

Spring 2016

* Allows multiple processes to execute simultaneously

* Each core has it’'s own unshared resource pool
* Processor
* Registers
* Cores may share common resources
* Disk
* Monitor
 Memory

* If fewer processes than cores, some cores stay idle (rare)

* If more processes than cores, processes swapped in and out of next
available core (swap-out time smaller)

Binghamton CS-220

University Spring 2016

Multi-core Time Slicing

Process 1 Process 2

Process 3

SERRRRARNRNRNRNE
SERNRRRRRRRRNRNR
“

CORE 2

Binghamton CS-220

University Spring 2016

Time Slicing Pro’s and Con’s

Advantages Disadvantages

* Fair resource sharing policy * Context swapping overhead -

* Enables multiple (seemingly) loss of efficiency

concurrent processing

