
Binghamton

University

CS-220

Spring 2016

Sharing Resources
Computer Systems Chapter 8.2, 8.4

Binghamton

University

CS-220

Spring 2016

Abstract View

When I run my program, it has access to the entire computer,
including the processor, memory, keyboard, display, disk drives,

network connections, etc. etc. etc.

Binghamton

University

CS-220

Spring 2016

Leaky Abstraction

• In fact, most hardware supports multiple concurrent users

• Each user is often running multiple programs concurrently

• System services (called “deamons”) are often running to provide
real-time capabilities

• Even running on a multi-core machine, the number of
concurrently running programs almost always exceeds the
number of processors.

Binghamton

University

CS-220

Spring 2016

Resource Sharing Goals

• Ensure each client (e.g. running program) gets a fair share of
resources

• Ensure that no client is blocked from continuing

• Ensure that busy clients get priority over idle clients

Binghamton

University

CS-220

Spring 2016

Early Resource Sharing: Batch Jobs

• Prepare your punch card deck

• Put your deck in the card reader… on top of other students

• Card reader reads the next job

• Computer processes the next job (compile, execute, print results)

• Later, you get your printout from the printer

Binghamton

University

CS-220

Spring 2016

Batch Processing / Sharing Goals

• Ensure each client gets a fair share of resources
• Everybody gets a turn

• First come/ first served

• Big jobs get more resources than small jobs

• Ensure that no client is blocked from continuing
• Fails if the student in front of me has an endless loop

• Ensure that busy clients get priority over idle clients
• Fails when the student in front of me is waiting for IO

• No concurrency!

Binghamton

University

CS-220

Spring 2016

Naming Clients

• Need a name/handle for each running program
• Can’t be program name, because I can run the same program concurrently

• Must be created when program starts

• Must be deleted when program ends

• process - An invocation of a program
• Process ID: a numeric identifier associated with a process (PID)

• C Standard library function calls can create new processes [more later]

• Ended by “exit” library call (in stdlib.h)

Binghamton

University

CS-220

Spring 2016

Process Hierarchy

• Processes can create new processes
• The creator is called the parent process or “ppid”

• The spawned process is called a child process

• Parent processes are responsible for their children

• In UNIX, when you log on, the OS process creates a child process
and assigns that process to you

• This is the interactive shell or GUI running on your behalf

Binghamton

University

CS-220

Spring 2016

Listing Processes
• In UNIX, the “ps” command lists processes

• By default, “ps” lists your process and all of it’s children

• To list all processes owned by you, “ps –u<userid>”

• To list all processes by all owners on this machine, “ps –e”

alpha:~/CS220> ps
PID TTY TIME CMD

2933 pts/3 00:00:00 tcsh
3057 pts/3 00:00:00 ps

alpha:~/CS220> ps -utbartens
PID TTY TIME CMD

2836 ? 00:00:00 sshd
2837 ? 00:00:00 tcsh
2839 ? 00:00:00 sftp-server
2913 ? 00:00:00 sshd
2914 ? 00:00:00 tcsh
2923 ? 00:00:00 sftp-server
2932 ? 00:00:00 sshd
2933 pts/3 00:00:00 tcsh
3058 pts/3 00:00:00 ps

Binghamton

University

CS-220

Spring 2016

Process Resources

• Each process THINKS it owns all machine resources
• “virtual” processor, virtual memory, virtual keyboard, virtual monitor,

virtual disks, virtual network, …

• OS connects VIRTUAL resources to REAL resources

PID 4879

Processor

Memory

Disk

Monitor

PID 5321PID 4472

Binghamton

University

CS-220

Spring 2016

Time Slicing

PID 4879

Processor

Memory

Disk

Monitor

PID 5321

PID 4472

Swap In

Swap Out

Binghamton

University

CS-220

Spring 2016

Time Slicing Concepts

• OS keeps a list of active processes
• An active process is a process trying to execute

• OS gives each active process a slice of time to make progress

• When a process gets a slice of time, it is swapped in
• All other active processes are swapped out

• When a process is swapped in, it can use real resources
• It can actually make progress in order to complete its job

• When a process is swapped out, it does not have access to
resources

• It remains idle until it gets a time slice

Binghamton

University

CS-220

Spring 2016

Process Context

• There is information/date associated with each process
• Register values

• Values in memory

• How much data has been read from a file

• etc.

• The sum of all state for the entire process is called the process
context

• When a process is active, it has access to its entire context

Binghamton

University

CS-220

Spring 2016

Time Slicing Issue – Context Swap

• When a process is swapped out, we must save it’s context

• When a process is swapped in, we must load it’s context

• The process of saving the outgoing context, and loading
the incoming context is called a “context swap”

• Context swapping is “overhead” – extra resource needed
that does not do the processes work

• No context swapping required for batch jobs

Binghamton

University

CS-220

Spring 2016

How Big should a Time Slice be?

Little Time Slices Big Time Slices

time time

Process 1 Process 2 Process 3

Binghamton

University

CS-220

Spring 2016

How Big should a Time Slice be?

Little Time Slices

• Makes progress seem
continuous to the user

• Increases the number of
context switches required
(more overhead)

• Smaller delta to swap in/out
(faster, less overhead)

Big Time Slices

• Makes progress seem jerky to
the user

• Decreases the number of
context switches required (less
overhead)

• Larger delta to swap in/out
(slower, more overhead)

Binghamton

University

CS-220

Spring 2016

Process Queue

• List of processes competing for resources

• New processes can be added to the queue

• When a program is done, it’s process can be removed from
the queue

Process 1 Process 2 Process 3

Binghamton

University

CS-220

Spring 2016

Process Swapping / Context Switch

• Wait for Instruction to End

• Save context of swap out process
• Registers (especially EIP) & flags

• Main Memory (stack and heap)

• I/O status

• Restore swapped in context
• Registers and Memory and I/O status

• Restart instruction processing cycle

Binghamton

University

CS-220

Spring 2016

Swapping Memory
Bad Idea:

Write Swap Out address space from memory to disk

Read Swap In address space from disk to memory

• A 32 bit address space is 4G

• Writing 4G to disk takes ~1G/sec or 4 seconds

• Times slices are MUCH smaller than 1 second

• You would spend 99.9999% of the time reading/writing memory!

Solution: Stay Tuned

Binghamton

University

CS-220

Spring 2016

Process Swapping and Interrupts

• Often a process must request a resource, and wait until that
resource is available

• E.g. request a disk read, and wait until that data is available

• Process cannot use the processor while it is waiting

• Identified as an “idle” process

• Idle processes swapped out, and kept off of the process queue

• When request is satisfied, an “interrupt” occurs to wake up that
process

• When a process wakes up, it goes back on the process queue

Binghamton

University

CS-220

Spring 2016

Multi-Core Time Slicing

• Allows multiple processes to execute simultaneously

• Each core has it’s own unshared resource pool
• Processor
• Registers

• Cores may share common resources
• Disk
• Monitor
• Memory

• If fewer processes than cores, some cores stay idle (rare)

• If more processes than cores, processes swapped in and out of next
available core (swap-out time smaller)

Binghamton

University

CS-220

Spring 2016

Multi-core Time Slicing

time

Process 1 Process 2 Process 3

Binghamton

University

CS-220

Spring 2016

Time Slicing Pro’s and Con’s

Advantages

• Fair resource sharing policy

• Enables multiple (seemingly)
concurrent processing

Disadvantages

• Context swapping overhead –
loss of efficiency

